
Chapter 9

Writing Classes
This chapter explains:

· how to write a class

· how to write public methods

· how to use private variables within a class
· how to write constructor methods

Introduction

In earlier chapters we have seen how to make use of library classes. In this chapter we see how to write our own classes. A class describes any number of similar objects that can be manufactured from it using the keyword new.

We shall see that a class typically consists of:

· private data (variables) that hold information about the object

· public methods that can be called by the user of the object to carry out useful functions.

· optionally, one or more constructor methods, used when an object is created. They are used to carry out any initialization, for example assigning initial values to the variables within the object.

· private methods that are used purely within the object and are inaccessible from outside the object

Designing a Class
When the programmer is thinking about a new program, they may see the need for an object that is not already available in the Java library of classes. As our first illustration we will use a program to display and manipulate a simplified balloon and we will represent the balloon as an object. The program simply displays a balloon as a circle in a panel, as shown in Figure 9.1. Buttons are provided to change the position and size of the balloon.

[image: image1]
Figure 9.1 The balloon program.

We will construct this program from two objects and therefore two classes:
· Class Balloon represents the balloon. It provides methods named move and changeSize – with obvious meanings.

· Class UseBalloon provides the GUI for the program. It uses class Balloon as necessary.

These classes are shown in the UML class diagram, Figure 9.2. Each class is represented as a rectangle. A relationship between classes is shown as a line joining the two. In this case the relationship is shown as an annotation above the line: class UseBalloon uses class Balloon.

Figure 9.2 Class diagram showing the two classes in the balloon program

We will first complete class UseBalloon and then we will write class Balloon. The complete code for UseBalloon is:
import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class UseBalloon extends Jframe

 implements ActionListener {

 private JButton growButton, moveButton;

 private JPanel panel;

 private Balloon balloon;

 public static void main(String[] args) {

 UseBalloon demo = new UseBalloon();

 demo.setSize(200,220);

 demo.createGUI();

 demo.setVisible(true);

 }

 private void createGUI() {

 setDefaultCloseOperation(EXIT_ON_CLOSE);

 Container window = getContentPane();

 window.setLayout(new FlowLayout());

 panel = new JPanel();

 panel.setPreferredSize(new Dimension(150, 150));

 panel.setBackground(Color.white);

 window.add(panel);

 moveButton = new JButton("move");

 window.add(moveButton);

 moveButton.addActionListener(this);

 growButton = new JButton("grow");

 window.add(growButton);

 growButton.addActionListener(this);

 balloon = new Balloon();

 }

 public void actionPerformed(ActionEvent event) {

 Graphics paper = panel.getGraphics();

 if (event.getSource() == moveButton) {

 balloon.moveRight(20);

 }

 else {

 balloon.changeSize(20);

 }

 paper.setColor(Color.white);

 paper.fillRect(0, 0, 150, 150);

 balloon.display(paper);

 }

}
At the head of the class UseBalloon, we declare instance variables as usual, including a variable named balloon:

private Balloon balloon;
Within the class UseBalloon, we perform any necessary initialization, including creating a new instance of the class Balloon. This is the crucial step where we create an object from our own class.

balloon = new Balloon();
Now the code to respond to button clicks. If the move button is clicked, then the method moveRight is called. Otherwise changeSize is called.
 public void actionPerformed(ActionEvent event) {

 Graphics paper = panel.getGraphics();

 if (event.getSource() == moveButton) {

 balloon.moveRight(20);

 }

 else {

 balloon.changeSize(20);
 }

 paper.setColor(Color.white);

 paper.fillRect(0, 0, 150, 150);

 balloon.display(paper);

 }

This concludes the coding for the class UseBalloon. Writing this code helps us to clarify how a balloon object will be used, enabling us to see what methods need to be provided by class Balloon, as well as the nature of any parameters. This leads us to write the code for class Balloon:

public class Balloon {

 private int x = 50;

 private int y = 50;

 private int diameter = 20;

 public void moveRight(int xStep) {

 x = x + xStep;

 }

 public void changeSize(int change) {

 diameter = diameter + change;

 }

 public void display(Graphics paper) {

 paper.setColor(Color.black);

 paper.drawOval(x, y, diameter, diameter);

 }

}

The heading of a class starts with the key word class, and gives the class name, followed by a brace. The complete class is terminated with a brace. A class is labeled as public so that it can be used widely. The Java convention (and in most OO languages) is that the name of a class starts with a capital letter. The body of a class consists of declarations of variables and methods. Note how the readability of the class is enhanced using blank lines and indentation. In the next few sections of this chapter we will look in detail at each of the ingredients in the above class for balloons.

In summary, the overall structure of a class is:
public class Balloon {

 // instance variables

 // methods

}
Now that we have written class Balloon, we can create any number of instances of it. We have already created one object by doing this:

balloon = new Balloon();

But we can in addition do this, for example:

Balloon balloon2 = new Balloon();

Classes and Files
When a program consists of just a single class, we have already seen that the Java source code must be placed in a file which has the same name as the class, but with the extension .java. Thus, for example, a class named Game goes in a file named Game.java and the header for the class is:

public class Game etc
The import statements must precede this header. The compiler translates the Java code to byte code, which it places in a file named Game.class.
When a program consists of two or more classes, there are two different approaches to placing classes in files:

1. place all the classes in a single file

2. place each class in its own file

Now the details of using each of these approaches will depend on which development system you are using. But here are some typical scenarios.
Single file
To adopt this approach:

1. place all the classes in one file.
2. declare as public the class containing method main.
3. declare all other classes as not public, i.e. with no access description.
4. make the file name equal to the name of the public class.
5. put the import statements at the start of the file. They apply to all the classes in the file.

For example, the file UseBalloon.java contains both classes:
import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class UseBalloon extends JFrame

 implements ActionListener {

// body of class UseBalloon
}

class Balloon {

// body of class Balloon

}
This approach has the advantage that all the classes are in one place. Moreover, the import statements are only needed once.
Separate files

To adopt this approach:
1. place each class in a file by itself.
2. declare every class as public.
3. make each file name equal to the name of the class it contains.
4. place the appropriate import statements at the start of each class.

5. place all the files in the same folder.
For example, the file UseBalloon.java contains:
import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class UseBalloon extends JFrame

 implements ActionListener {

// body of class UseBalloon
}

A second file Balloon.java, consists of:
import java.awt.*;

public class Balloon {

// body of class Balloon

}
This approach has the advantage that the classes are in different files and therefore can be re-used more easily. We use this approach throughout this book.
It is vital to compile the files in dependency order. Class UseBalloon uses a Balloon object and therefore the Balloon class must be compiled first.

private variables

A balloon has data associated with it – its size (diameter) and its position (as x and y coordinates). A balloon object must remember these values. This data is held in variables that are described like this:

private int x = 50;

private int y = 50;

private int diameter = 20;

The variables diameter, x and y are declared at the top of the class. They can be accessed by any of the statements in the class. They are called class-level variables or instance variables.

The word used to introduce variables – int, for example - has been augmented with the word private. Class level variables are almost always declared as private. This means that they are accessible from anywhere within the class, but inaccessible from outside.

Although we could describe these variables as public, it would be bad practice. It is best to keep variables hidden from outside. So we keep them as private, and use methods to access their values from outside the class. We shall shortly see how to do this.

SELF-TEST QUESTION

9.1
Extend the balloon object so that it has a variable that describes the color of the balloon.

Answer

private Color color;
 public methods

Some features of an object need to be publicly available to other pieces of program. These are those methods, which, after all, have been designed for the use of others. As we have seen, a balloon has actions associated with it – for example, to change its size. These actions are written as methods. Changing the size is accomplished by:

public void changeSize(int change) {

diameter = diameter + change;
}
To signify that a method is publicly available, by users of the class, we precede the method header with the Java word public. Next we write the method to move a balloon:

public void moveRight(int xStep) {

 x = x + xStep;
}
To complete the class we provide a method for a balloon to display itself when requested to do so.

public void display(Graphics paper) {

 paper.setColor(Color.black);

 paper.drawOval(x, y, diameter, diameter);

}

We have now distinguished clearly between those items that we are making publicly available and those that are private. This is an important ingredient of the philosophy of OOP. Data (variables) and actions (methods) are bundled up together, but in such a way as to hide some of the information from the outside world. Normally it is the data that is hidden away from the rest of the world. This is termed encapsulation or information hiding.

So a class normally consists of:

· public methods, and

· private variables

SELF-TEST QUESTIONS

9.2
Write a method that moves a balloon upwards by an amount given as the parameter. Name the method moveUp.

Answer

public void moveUp(int amount) {
 yCoord = yCoord - amount;
}
9.3
Write a method that an enables the color of a balloon to be changed

Answer

public void changeColor(Color newColor) {

 color = newColor;
}
End of Self-Test Question
SELF-TEST QUESTION
Re-write method display so that it displays a colored balloon.

Answer

public void display(Graphics paper) {
 paper.setColor(color);
 paper.drawOval(x, y, diameter, diameter);
}

End

A class (or object) has the general structure shown in Figure 9.3. This is the view as seen by the programmer who writes the class – it consists of variables and methods. The view of an object as seen by its users is shown in Figure 9.4. The view to its users, to whom it is providing a service, is very different. Only the public items (usually methods) are visible – everything else is hidden within an impenetrable box.

Figure 9.3 Structure of an object or class as seen by the programmer who writes it.

[image: image2.png]

Figure 9.4 Structure of an object or class as seen by its users.

get and set methods
It is very bad practice to allow external access to the variables within an object. For example, suppose that a class needs to know the x coordinate of a balloon. It is very appealing simply to declare the value x as public. Then the user of the object could simply refer to the value as balloon.x. This is feasible, but it is poor design. Instead, access to variables is controlled by providing methods that access them. So we provide a method named getX, part of the class Balloon. A user can use it like this:
int position = balloon.getX();

The coding for method getX is as follows:

public int getX() {

 return x;

}

Users either need to read the value of a variable, to change it, or both. So we need a method to supply the value, conventionally named a get method and a method to change it, conventionally named a set method. The words get and set are not Java keywords.
The methods getText and setText of the JTextField class are typical widely-used examples of get and set methods within the Java libraries.

There are several reasons why using methods to control access to variables is preferable:

· the class can hide the internal representation of the data from the users, while still maintaining the external interface. For example, the author of the balloon class might choose to hold the coordinates of the center point of a balloon, but provide users with the coordinates of the top left of an enclosing square.

· the author of the class can decide to restrict access to data. For example the class could restrict the value of the x coordinate to read-only (get) access, while disallowing write (set) access.

· the class can validate or check the values used. For example, the class could ignore an attempt to provide a negative value for a coordinate.

SELF-TEST QUESTION
Write a method to allow a user only get access to the y coordinate of a balloon.

End

Answer

public int getY() {
 return y;
}

End of Self-Test Question
Constructors

When a balloon object is created, the position and size of the balloon need to be given some values. This is called initializing the variables. There are two ways to do the initialization of variables. One way is to do the initialization as part of the declaration of the class level variables. For example:
private int x = 50;
private int y = 50;
private int diameter = 20;
Another way to initialize an object is to write a special method to do the initialization. This method is named a constructor method or simply a constructor (because it is involved in the construction of the object). This method always has the same name as the class. It has no return value, but it will usually have parameters. Here is a constructor method for the Balloon class:

public Balloon(int initialX, int initialY,

 int initialDiameter) {

 x = initialX;
 y = initialY;
 diameter = initialDiameter;
}
This method assigns the values of the parameters (the size and position) to the appropriate variables within the object. A constructor method such as this is written at the top of the class, after the declarations of the class-level variables. Constructors are labeled as public, because they must be accessed from outside their class. Notice that the constructor has no return type, or even void.
The above constructor method would be used as shown by this example:

Balloon balloon = new Balloon(10, 10, 50);
If a variable is not explicitly initialized by the programmer, the Java system gives every variable a default value. This is zero for any numbers, false for a boolean, "" (an empty string) for a String and the value null for any object. It is regarded as bad practice to rely on this method of initialization of variables. Instead, it is better to do it explicitly, either when the information is declared or by statements within a constructor.
Other actions that a constructor method might take include creating any other objects that the object needs to use or opening a file that the object uses.

If a class does not have an explicit constructor, then it is assumed to have a single constructor with zero parameters. This known as the default constructor or zero-arg constructor.

Multiple Constructors

A class can have none, one or several constructor methods. If a class has one or more constructors, they will normally involve parameters and must be called with the appropriate parameters. For example, in the Balloon class, we can write the two constructors:

public Balloon(int initialX, int initialY,
 int initialDiameter) {

 x = initialX;
 y = initialY;
 diameter = initialDiameter;
}
public Balloon(int initialX, int initialY) {

 x = initialX;
 y = initialY;
 diameter = 20;

}
which would allow us to create balloon objects in either of the following ways:

Balloon balloon1 = new Balloon(10, 10, 50);
Balloon balloon2 = new Balloon(10, 10);
but not allow:

Balloon balloon3 = new Balloon();
So if you write several constructors, but you still need a constructor with zero parameters, you must explicitly write it, for example:

public Balloon() {

 x = 50;

 y = 50;

 diameter = 20;

}
We have now written 3 constructors for the class Balloon, and here is how they might be used to create 3 different objects from the same class:

Balloon balloon1 = new Balloon(10, 10, 50);
Balloon balloon2 = new Balloon(10, 10);
Balloon balloon3 = new Balloon();

SELF-TEST QUESTION
9.5
Write a constructor method to create a new balloon, specifying only the diameter.

Answer

public Balloon(int initialDiameter) {

 diameter = initialDiameter;
}
private methods

The whole purpose of writing a class is to allow the creation of objects that present useful facilities to other objects. These facilities are the public methods that the object offers. But often a class has methods that do not need to be made public and, indeed, all the methods in the programs given earlier in this book are private.

Here is a class Ball that represents a ball that can be animated, bouncing around a panel. It uses private methods, as well as a public method and a constructor. It uses the private methods as a way of clarifying what might otherwise be a complex piece of program. The public method animate is called at frequent regular intervals in order to re-draw an image. It calls private methods move, bounce, delete and draw. We have created private methods that act in support of the public methods in the class. In this example the private methods do not use parameters, but, in general, private methods have parameters.
import java.awt.*;

public class Ball {

 private JPanel panel;

 private int x = 7, xChange = 7;

 private int y = 0, yChange = 2;

 private int diameter = 10;

 private int width = 100, height = 100;

 public Ball(JPanel thePanel) {

 panel = thePanel;

 }

 public void animate() {

 delete();

 move();

 bounce();

 draw();

 }

 private void move() {

 x = x + xChange;

 y = y + yChange;

 }

 private void bounce() {

 if (x <= 0 || x >= width)

 xChange = -xChange;

 if (y <= 0 || y >= height)

 yChange = -yChange;

 }

 private void draw() {
 Graphics paper = panel.getGraphics();
 paper.setColor(Color.red);

 paper.fillOval(x, y, diameter, diameter);

 }

 private void delete() {
 Graphics paper = panel.getGraphics();
 paper.setColor(Color.white);

 paper.fillOval (x, y, diameter, diameter);

 }

}

To call a method from within the object, you do it like this:

move();
giving the name of the method and any parameters as usual. If we really want to emphasize which object is being used, we could write the following equivalent code:

this.move();
using the keyword this that means the current object.

Depending on its size and complexity, a class might have a number of private methods. Their purpose is to clarify and simplify the class.

Scope Rules

In programming, the term accessibility (sometimes called scope rules or visibility) means the rules for accessing variables and methods. For humans, accessibility rules are like the rule that in Australia you must drive on the left, or the rule that you should only enter someone’s home via the front door. In a program, rules like these are rigidly enforced by the compiler, to prevent deliberate or erroneous access to protected information. Accessibility rules constrain the programmer, but help the programmer to organize a program in a clear and logical manner. The accessibility rules associated with classes and methods allow the programmer to encapsulate variables and methods in a convenient manner.

The programmer can describe each variable and method as either public or private. Within a class, any instruction anywhere in the class can call any method, public or private. Also any instruction can refer to any instance variable. The exception is that local variables, those declared within a method, are only accessible by instructions within the method.

When one class refers to another, only those methods and variables labeled as public are accessible from outside a class. All others are inaccessible. It is good design practice to minimize the number of methods that are public, restricting them so as to offer only the services of the class. It is also good practice never (or very rarely) to make variables public. If a variable needs to be inspected or changed, methods should be provided to do the job.

In summary, a variable or method within a class can be described as either:

1.
public – accessible from anywhere (from within the class or from any other class)

2.
private – accessible only from within the class.

In addition, local variables, which are variables declared within a method, are accessible only within the method.

Classes are labeled public so that they can be used as widely as possible. Constructors are labeled as public because they need to be called from outside the class.

We will revisit scope rules when we study the topic of inheritance in chapter 10.
Operations on objects

Many of the objects that are used in Java programs must be declared as instances of classes, but some do not. Variables declared as int, boolean and double are called primitive types. They come ready-made as part of the Java language. Whereas class names usually start with a capital letter, the names of these primitive types start with lower case. When you declare one of these variables, it is immediately useable. For example:

int number;

both declares the variable number and creates it. By contrast, the creation of any other objects has to be done explicitly using new. For example:

Balloon balloon = new Balloon(10, 20, 50);
So variables in Java are either:

1.
Primitive types such as int, boolean and double.
or

2.
Objects explicitly created from classes, by using new.

Variables which are declared to be of a primitive type come ready-made with a whole collection of things you can do with them. For example, with variables of type int you can:

· declare variables

· assign values using =
· carry out arithmetic

· compare using ==, <, etc.

· use as a parameter or as a return value.

You cannot necessarily do all these things with objects. Many things that a Java program uses are objects but, as we have seen, not everything is an object. And it is tempting to assume that it is possible to use all these operations with any object - but this is not so. What can you do with an object? The answer is that when you write a class, you define the set of operations that can be performed on objects of that type. With the Balloon class, for example, we have defined the operations changeSize, move and display. The programmer should not assume that you can do anything else to a balloon. However, you can confidently assume that for every object you can:

· create it using new
· use it as a parameter and as a return value

· assign it to a variable of the same class using =
· use the methods that are provided as part of its class

SELF-TEST QUESTION
9.6
Suggest a list of operations that are possible with an object of the class Balloon and give examples of using them.

Answer

Methods are: changeColor, moveLeft, moveRight, changeSize, display, getX, getY.
Examples:

balloon.changeColor(Color.red);
balloon.moveLeft(20);
balloon.moveRight(50);
balloon.changeSize(10);
balloon.display(paper);
int x = balloon.getX();

int y = balloon.getY();

Object destruction

We have seen how objects are created, using the powerful word new. How do they die? One obvious and certain situation is when the program ceases to run. They can also die when they cease to be used by the program. For example, if we do this to create a new object:

Balloon balloon;

balloon = new Balloon(20, 100, 100);
and then:

balloon = new Balloon(40, 200, 200);
what happens is that the first object created with new lived a brief life. It died when the program no longer had any knowledge of it and its value was usurped by the newer object.

When an object is destroyed, the memory that was used to store the values of its variables and any other resources is reclaimed for other uses by the run-time system. This is termed garbage collection. In Java, garbage collection is automatic. (In some other languages, notably C++, it is not automatic and the programmer has to keep track of objects that are no longer needed.)

Finally, we can destroy an object by assigning the value null to it, for example:

balloon = null;
The word null is a Java keyword that describes a non-existent (un-instantiated) object.

 static methods
Some methods do not need an object to work on. An example is the mathematical square root function. Mathematical methods such as square root, sqrt, and sine of an angle ,sin, are provided within a library class named Math. In a program to use them, we write statements such as:

double x, y;

x = Math.sqrt(y);
In this statement there are two double variables, x and y, but no objects. Note that Math is the name of a class, not an object. The square root method sqrt acts on its parameter y. The question is: if sqrt is not a method of some object, what is it? The answer is that methods like this are part of a class, but they are described as static. When you use one of these methods, its name must be preceded with the name of its class (instead of the name of an object).

The class Math has the following structure (the code shown is incomplete). The methods are labeled as static:

public class Math {

 public static double sqrt(double x) {

 // body of sqrt
 }
 public static double sin(double x) {

 // body of sin

 }
}
Another example of a static method is parseInt within class Integer. The method main that appears at the head of every Java application is also a static method.
What is the point of static methods? In OOP, everything is written as a part of a class; nothing exists other than within classes. If we think about the Balloon class, it contains private variables such as x and y that record the state of an object. But some methods, such as sqrt, do not involve a state. However, free-standing methods such as sqrt which are not obviously part of some class, have to obey the central rule of OOP – they have to be a part of some class. Hence the reason for static methods. It is common for programmers to make use of the library static methods but it is rare for novice programmers to write them.

static methods are also termed class methods because they belong to the class rather than to any object created from the class.

SELF-TEST QUESTION
9.7 The static method max within the class Math finds the maximum of its two int parameters. Write a sample call on max.

Answer

int x;
x = Math.max(7, 8);
static variables
A variable declared at the head of a class can be described as static. This means that it belongs to the class and not to any individual objects that are created as instances of the class.
As an example, the class Math contains a static variable, the mathematical constant pi. This variable is referred to as Math.PI, again preceding the variable name by the class name. Making data values public like this is very unusual in object-oriented programming, because normally variables are labeled private in the spirit of information hiding. Access to the mathematical constants is an exception to this general rule. The variable PI is declared as follows within the class Math:

public class Math {
 public final static double PI = 3.142;
 // remainder of class Math

}

(Except that the value of pi is given to a greater precision.)

Another example of static variables is in the class Color, which provides variables that are referred to as Color.black, Color.white etc.

The description static does not mean that a static variable cannot be changed. It means that, unlike non-static variables, a copy of the variable is not created when an object is created from the class. The description static implies uniqueness, i.e. there is only one copy of this variable for the whole class, rather than one copy for each instance of the class.
static variables are sometimes known as class variables, but they are not the same as class-level variables.
Programming principles

Object-oriented programming is about constructing programs from objects. An object is a combination of some data (variables) and some actions (methods) that performs some useful role in a program. The programmer designs an object so that the data and the actions are closely related, rather than being randomly collected together.
In Java, as in most OOP languages, it is not possible to write instructions that describe an object directly. Instead the language makes the programmer define all objects of the same class. For example, if we need a button object, we create an instance of the JButton class. If we need a second button, we create a second instance of this same class. The description of the structure of all possible buttons is called a class. A class is the template or the master plan to make any number of them; a class is a generalization of an object.
The idea of classes is a common idea in most design activity. It is usual before actually constructing anything to create a design for the object. This is true in automobile design, architecture, construction – even in fine art. Some kind of a plan is drafted, often on paper, sometimes on a computer. Sometimes it is called a blueprint. Such a design specifies the desired object completely, so that if the designer gets run over by a bus, someone else can carry out the construction of the object. Once designed, any number of identical objects can be constructed – think of cars, books or computers. So the design specifies the composition of one or any number of objects. The same is true in OOP – a class is the plan for any number of identical objects. Once we have specified a class, we can construct any number of objects with the same behavior.

Considering the JButton library class again, what we have is the description of what each and every button object will look like. Buttons only differ in their individual properties, such as their positions on the form. So in OOP, a class is the specification for any number of objects that are the same. Once a class has been written, a particular object is constructed by creating an instance of the class. It’s a bit like saying we have had an instance of flu in the home. Or, this Model T Ford is an instance of the Model T Ford design. Your own bank account is an instance of the bank account class.

An object is a logical bundling together of variables, and methods. It forms a self-contained module that can be easily used and understood. The principle of information hiding or encapsulation means that users of an object have a restricted view of an object. An object provides a set of services as public methods that others can use. The remainder of the object, its variables and the instructions that implement the methods are hidden from view. This enhances abstraction and modularity.

In computer science a class is sometimes called an abstract data type (ADT). A data type is a kind of variable, like an int, a double or a boolean. These primitive types are types built into the Java language and are immediately available for use. Associated with each of these types is a set of operations. For example, with an int we can do assignment, addition, subtraction and so on. The Balloon class above is an example of an ADT. It defines some data (variables), together with a collection of operations (methods) that can carry out operations on the data. The class presents an abstraction of a balloon; the concrete details of the implementation are hidden.

We can now fully understand the overall structure of a program. Every Java program has a heading similar to this (but with the appropriate class name):

public class UseBalloon
This is a description of a class named UseBalloon, because like everything else in Java, a program is a class. When a program starts, the static method main is called.
Programming pitfalls

Novices sometimes want to code an object straightaway. You can’t – instead you have to declare a class and then create an instance of the class.

Do not forget to initialize instance variables. Explicitly initialize them by means of a constructor method or as a part of the declaration itself and do not rely on Java's default initialization.

If you declare:

Balloon balloon;

and then perform:

balloon.display(paper);
your program will terminate with an error message that says there is a null pointer exception. This is because you have declared an object but not created it (with new). The object balloon does not exist. More accurately, it has the value null – which amounts to the same thing. In most elementary programming you do not make use of null – except if you inadvertently forget to use new.

Grammar spot

· A class has the structure:

public class ClassName {

 // declarations of instance variables

 // declarations of methods
}
· variables and methods can be either described as public or private
· One or more of the methods in a class can have the same name as the class. Any one of these constructor methods may be called (with appropriate parameters) to initialize the object when it is created.

· The declaration of a public method has the structure:

public void methodName(parameters) {

 // body

}
· A static method is prefixed by the word static in its header.
· To call a static method of a class:

ClassName.methodName(parameters);
New language elements

· class
appears in the heading of a class

· public
the description of a variable or method that is accessible from anywhere

· private
the description of a variable or method that is only accessible from within the class

· new
used to create a new instance of a class (a new object)

· this
the name of the current object

· null
the name of an object that does not exist

· static
the description attached to a variable or method that belongs to a class as a whole, not to any instance created as an object from the class.

Summary
· An object is a collection of data and the associated actions, methods, that can act upon the data. Java programs are constructed as a number of objects.

· A class is the description of any number of objects

· Items in a class can be declared to be private or public. A private item can only be referred to from within the class. A public item can be referred to by anything (inside or outside the class). In designing a Java program, public variables are avoided so as to enhance information hiding.

· Methods that have the same name as the class carry out the initialization of a newly created object. These are termed constructor methods.

· The description static means that the variable or method belongs to the class and not to particular objects. A static method can be called directly, without any need for instantiating an instance of the class with new. A static method is useful when a method does not need to be associated with a particular object, or for carrying out actions for the class as a whole. static variables are typically used as constants within library classes such as class Math.
EXERCISES
9.1 Balloons Add to the class Balloon some additional data: a String that holds the name of the balloon and a Color variable that describes its color. Add code to initialize these values using a constructor method. Add the code to display the colored balloon and its name.

Enhance the balloon program with buttons that move the balloon left, right, up and down.
9.2 Thermometer. Some thermometers record the maximum and minimum temperatures that have been reached.
Write a program that simulates a thermometer using a slider. It displays in text fields the maximum and minimum values that the slider has been set to. Write a class that remembers the largest and smallest values and compares new values. This class has methods setNewValue, getLowestValue and getHighestValue.

9.3 Bank account Write a program that simulates a bank account. A button allows a deposit to be made into the account. The amount is entered into a text field. A second button allows a withdrawal to be made. The amount (the balance) and the state of the account is continually displayed - it is either OK or overdrawn. Create a class named Account to represent bank accounts. It has methods deposit, withdraw, getCurrentBalance and setCurrentbalance.
9.4 Scorekeeper Design and write a class that acts as a scorekeeper for a computer game. It maintains a single integer, the score. It provides a method to initialize the score to zero, a method to increase the score, a method to decrease the score, and a method to return the score. Write a program to create a single object and use it. The current score is always on display in a text field. Buttons are provided to increase, decrease and initialize the score by an amount entered into a text field.
9.5 Dice Design and write a class that acts as a die, which may be thrown to give a value 1 to 6. Initially write it so that it always gives the value 6. Write a program that creates a die object and uses it. The screen displays a button, which when pressed causes the die to be thrown and its value displayed.
Then alter the die class so that it gives the value one higher than when it was last thrown, for example 4 when it was 3. When the last value was 6, the new value is 1.
Then alter it so that it uses the library random number generator.

Some games such as backgammon need two dice. Write Java statements to create two instances of the die class throw the dice and display the outcomes.

9.6 Random number generator Write your own integer random number generator as a class that uses a formula to obtain the next pseudo-random number from the previous one. A random number program works by starting with some ‘seed’ value. Thereafter the current random number is used as a basis for the next by performing some calculation on it which makes it into some other (apparently random) number. A good formula to use for integers is:

nextR = ((oldR * 25173) + 13849) % 65536;
which produces numbers in the range 0 to 65535. The particular numbers in this formula have been shown to give good, random-like, results.

Initially, make the seed value equal to 1. Then, in a more sophisticated program, obtain the milliseconds part of the time using library class Calendar (see appendix A) to act as the seed.

9.7 Parking Lot (Car Park). A program provides two buttons. The parking attendant clicks on one button when a car enters the lot and the other button when a car leaves. If a car attempts to enter when the lot is already full, a warning is displayed in an option pane.
Implement the count of cars and its operations as a class. It provides a method named enter, which increments the count and a method named leave, which decrements the count. A third method (named full) returns a boolean specifying whether the lot is full or not.
9.8 Complex numbers. Write a class called Complex to represent complex numbers (together with their operations). A complex number consists of two parts – a real part (a double) and an imaginary part (a double). The constructor method should create a new complex number, using the double values provided as parameters, like this:

Complex c = new Complex(1.0, 2.0);
Write methods getReal and getImaginary to get the real part and the imaginary part of a complex number and which is used like this:

double x = c.getReal();
Write a method sum to add two complex numbers and return their sum. The real part is the sum of the two real parts. The imaginary part is the sum of the two imaginary parts. A call of the method looks like:

Complex c = c1.sum(c2);
Enter values for c1 via two text fields and ditto for c2. Display the values of c also in two text fields.

Write a method prod to calculate the product of two complex numbers. If one number has components x1 and y1 and the second number has components x2 and y2:

· the real part of the product is = x1 × x2 – y1 × y2

· the imaginary part of the product = x1 × y2 + x2 × y1

private

class level variables

public methodM

lines of code

private methods

lines of code

public methodN

lines of code

public methodM

public methodN

UseBalloon

Balloon

uses

39
36

